Abstract

Auditory development after bilateral cochlear implantation in children has been measured using source localization of multi-channel late latency responses. It is not clear, however, whether this development can be tracked using a more clinically feasible method of recording from one active recording electrode placed at mid-line center of the head (Cz). In this prospective cohort study, cortical auditory-evoked potential responses (CAEPs) were recorded from Cz referenced to each earlobe (Cz-CAEP) from 222 children with bilateral cochlear implant (CI); 128 (mean ± SD age: 2.78 ± 3.30 years) received both CIs in the same surgery (simultaneous group) and 94 (aged 7.72 ± 4.45 years) received a second CI after 4.21 ± 2.98 years of unilateral CI use. We sought to (1) identify cortical development over the first couple of years of bilateral CI use; (2) measure known asymmetries in auditory development between the CIs; and (3) detect the effects of bilateral rather than unilateral CI use. 4556 Cz-CAEPs were recorded across the cohort over 33.50 ± 7.67 months duration of bilateral CI use. Given concerns related to peak picking, amplitude areas were measured across two response time windows (50 to 199 ms and 200 to 400 ms). Results indicated that small response amplitudes occur at initial CI use and amplitudes increase in the negative or positive direction rapidly over the first months of CI use in both time windows. Asymmetries between Cz-CAEPs evoked by each CI were found in the sequential group and reduced with bilateral CI use, particularly in the first time window; these differences increased with longer inter-implant delay. Bilaterally evoked Cz-CAEPs were larger in amplitude than unilateral responses from either CI in the simultaneous group. In the sequential group, bilateral responses were similar to responses from the first implanted side but increased in relative amplitude with bilateral CI use. The Cz-CAEP measures were not able to predict asymmetries or bilateral benefits in speech perception measures. The Cz-CAEP was able to indicate cortical detection of CI input and showed gross morphological changes with bilateral CI use. Findings indicate Cz-CAEPs can be used to identify gross changes in auditory development in children with bilateral CIs, but they are less sensitive to tracking the remaining abnormalities that are measured by multi-channel CAEPs and speech perception testing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call