Abstract
The conductance along an island layer of Ge quantum dots buried in silicon was investigated. The sizes of the islands varied in the range D ≈ 12−19 nm. It was found that the charge transport is characterized by two activation energies. The first one is associated with the thermal emission of holes from Ge quantum wells into the valence band of Si. The second one is due to the tunneling of holes between islands under Coulomb blockade conditions and is determined by the electrostatic charging energy of a quantum dot.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have