Abstract
Two-dimensional (2D) materials have been extensively adopted in various device architectures for advanced applications owing to their structural diversity, high functionality, and ease of integration. Among the various architectures, split-gate field-effect transistors (SG-FETs) have been widely studied based on their sequentially located SG electrode along the source/drain electrodes. In this paper, we propose two different homogeneous molybdenum disulfide (MoS2)-based SG-FET structures, namely AND-FET and OR-FET, whose gap directions are perpendicular to each other. It can exhibit AND or OR switching characteristics if it has a longitudinal or latitudinal gapped SG structure, respectively. Moreover, the AND-FET and OR-FET are regarded as folded structures of series and parallel connections of two n-type transistors. By using these switching devices, we successfully demonstrate NAND and NOR logic gates through a single active channel. These approaches are expected to pave the way for the realization of multi-functionality and high integration of 2D material-based future electronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.