Abstract
We studied long and very long wavelength InAs/InAsSb superlattice barrier infrared detectors that contain p-type absorber layers in order to take advantage of the longer electron diffusion length for quantum efficiency (QE) enhancement. While they can achieve higher QE than devices that use only n-type absorbers, their dark current characteristics are affected by the presence of metallurgical and surface p–n junctions, and are best operated under lower biasing conditions where the tunneling dark currents are less pronounced. Rather than using a p-type absorber only, a barrier infrared detector structure with a combination of p- and n-type absorber sections can benefit from a shallower mesa etch that reduces fabrication demands and also decreases the p-type absorber exposed surface area. We compare four complementary barrier infrared detector structures that use an n-type absorber, a combination of p- and n-type absorbers, or a p-type absorber and briefly report results from a 13.3 μm cutoff focal plane array.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.