Abstract

Super-resolution microscopy in the visible is an established powerful tool in various disciplines. In the long-wave infrared (LWIR) spectral range, however, no comparable schemes have been demonstrated to date. In this work, we experimentally demonstrate super-resolution microscopy in the LWIR range (λIR≈10–12 μm) using IR-visible sum-frequency generation. We operate our microscope in a wide-field scheme and image localized surface phonon polaritons in 4H-SiC nanostructures as a proof-of-concept. With this technique, we demonstrate an enhanced spatial resolution of ∼λIR/9, enabling to resolve the polariton resonances in individual sub-diffractional nanostructures with sub-wavelength spacing. Furthermore, we show that this resolution allows us to differentiate between spatial patterns associated with different polariton modes within individual nanostructures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call