Abstract

The ensemble Kalman filter has become a popular data assimilation technique in the geosciences. However, little is known theoretically about its long term stability and accuracy. In this paper, we investigate the behavior of an ensemble Kalman--Bucy filter applied to continuous-time filtering problems. We derive mean field limiting equations as the ensemble size goes to infinity as well as uniform-in-time accuracy and stability results for finite ensemble sizes. The later results require that the process is fully observed and that the measurement noise is small. We also demonstrate that our ensemble Kalman--Bucy filter is consistent with the classic Kalman--Bucy filter for linear systems and Gaussian processes. We finally verify our theoretical findings for the Lorenz-63 system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.