Abstract
Successful transduction of hematopoietic stem cells is essential if gene therapy is to be used clinically to induce immunologic tolerance. Hoechst 33342 staining was used to isolate a population of bone marrow cells enriched for stem cells, termed side population (SP) cells. Murine bone marrow SP cells were transduced with HLA-A2.1-expressing VSV-G-pseudotyped lentivirus or retrovirus vectors under identical conditions. After transduction without prestimulating cytokines, which minimizes cell cycling and helps maintain stem cell pluripotency, the HLA-A2.1 gene was found in the DNA of 56% of CFU-GM colonies derived from lentivirus-transduced SP cells, but in only 4% of colonies derived from retrovirus-transduced SP cells. Lentivirus and retrovirus transduction including cytokine prestimulation produced the same degree of integration as that following lentivirus-transduction of non-prestimulated cells. Transplantation of 5,000 lentivirus-transduced SP cells into lethally irradiated mice resulted in long-term expression of the HLA-A2.1 transgene in peripheral blood progeny of bone marrow SP cells and prolonged skin graft survival across this class I MHC barrier until the time of animal sacrifice. Recombinant lentivirus, but not retrovirus vectors, effectively transduced SP cells that were not prestimulated with cytokines and lentivirus-transduced SP cells successfully repopulated lethally irradiated C57BL/6 mice, animals where there is no selective advantage to repopulation with transduced cells. Transplantation of a relatively small number of transduced SP cells led to prolonged transgene mRNA expression and antigen-specific survival of grafts expressing the foreign MHC transgene.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have