Abstract

We review the conventional phase-locking technique in the long-term stabilization of the mode-locked fiber laser and investigate the phase noise limitation of the conventional technique. To break the limitation, we propose an improved phase-locking technique with an optic-microwave phase detector in achieving the ultra-low phase noise and phase drift. The mechanism and the theoretical model of the novel phase-locking technique are also discussed. The long-term stabilization experiments demonstrate that the improved technique can achieve the long-term stabilization for the MLFL with ultra-low phase noise and phase drift. The excellent locking performance of the improved phase-locking technique implies that this technique can be used to stabilize the mode-locked fiber laser with the highly stable H-master or optical clock without stability loss.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.