Abstract

Synaptic modification supporting memory formation is thought to depend on gene expression and protein synthesis. Disrupting either process around the time of learning prevents the formation of long-term memory. Recent evidence suggests that memory also becomes susceptible to disruption upon retrieval. Whether or not the molecular events involved in the formation of new memory are the same as what is needed for memory to persist after retrieval has yet to be determined. In the present set of experiments, rats were given inhibitors of protein or messenger ribonucleic acid (mRNA) synthesis into the amygdala just after training or retrieval of fear memory. Results showed that blocking mRNA or protein synthesis immediately after learning prevented the formation of long-term memory, while stability of memory after retrieval required protein, but not mRNA, synthesis. These data suggest that the protein needed for memory reconsolidation after retrieval may be transcribed from pre-existing stores of mRNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.