Abstract
In the present study, a novel silicon-aluminizing diffusion coating composed of uniform Ti (Al, Si)3 phase was manufactured on γ-TiAl alloy via post heat-treatment of cold-sprayed Al-40Si (wt.%) coating. The high temperature oxidation resistance of the diffusion coating was evaluated under 950 ◦C for 1000 h. During the oxidation process, Ti5Si3 precipitations with network-like structure were shaped in the inner of the diffusion coating, which acted as getters for Ti and promoted the formation of Al2O3 scale. Meanwhile, an in-situ Ti5Si3 diffusion barrier was also formed, which inhibited the interdiffusion between the coating and substrate, especially the fast depletion of Al in the diffusion coating and thus improved the long-term oxidation resistance of γ-TiAl. The microstructure evolution, formation of the in-situ diffusion barrier and high temperature oxidation resistance mechanisms of the diffusion coating were discussed in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.