Abstract

This Letter describes the realization of long-term optical information storage in glass using an enhanced signal-to-noise ratio (SNR). We show that the photo-oxidation of Eu2+ ions in the glass matrix induced by ultraviolet light suppresses background signals, thereby enhancing by tenfold the SNR of Eu2+ ions photoluminescence (PL) of the dots written by a femtosecond (fs) laser. Thus, smaller dots exhibiting weak PL emission can be detected. In addition, the stored information shows excellent stability under the light irradiation with the power density up to 240W/cm2. Accelerated-aging experiments indicate that the stored data can retain stability for more than 115 years at room temperature. The optical storage capacity is approximately 270Gbitcm-3. This technique enables long-term, high-capacity data storage in glass media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.