Abstract

We investigated soil bacterial and fungal communities, constructed co-occurrence networks, and estimated bacterial traits along a gradient of nitrogen (N) input. The results showed that soil bacterial co-occurrence networks complexity decreased with increasing N input. The ratio of negative to positive cohesion decreased with increasing N input, suggesting the declined competitive but strengthened cooperative interactions. However, soil fungal network complexity did not change under N enrichment. In addition, N input stimulated the copiotroph/oligotroph ratio, ribosomal RNA operon (rrn) copy number, and guanine-cytosine (GC) content of soil bacteria, shifting bacterial life history strategy toward copiotroph with increased r-/K-strategy ratio. Piecewise structural equation modeling results further revealed that the reduction in bacterial co-occurrence network complexity was directly regulated by the increased bacterial r-/K-strategy ratio, rather than reduced bacterial richness. Our study reveals the mechanisms through which microbial traits regulate interactions and shape co-occurrence networks under global changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.