Abstract

The radiation fields onboard aircraft are complex (EURADOS, 1996), and several methods are used to characterise them for radiation protection. We have tested a spectrometer based on Si-diode at different sources and accelerator facilities. The energy deposited in the diode is analysed to estimate the contribution of different radiations to dosimetry quantities. The spectrum of energy deposition events onboard aircraft is similar to that registered in the CERN high-energy reference field. We used this similarity to determine the correction factors to appreciate radiation protection quantities from the results of onboard measurements. During 2001–2002, the spectrometer was used to acquire measurements onboard commercial aircraft during five long-term exposures. All necessary flight parameters were acquired; thus permitting calculations of the onboard effective dose and/or ambient dose equivalent by means of both the CARI6 and the EPCARD codes and comparison with the results of the measurements. It was found that the apparent ambient dose equivalent values from measured data are in reasonable agreement with the results of calculations. Quantitative analysis of this agreement as a function of flight parameters (geomagnetic position, solar activity variations, etc.) is presented. During one flight, an important solar event GLE 60 on 15 April 2001 was recorded by the spectrometer. In some other cases the measurements during a Forbush decreases were acquired. These extremes were well registered by the equipment and the data obtained are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call