Abstract
Previous work shows that transforming growth factor-β1 (TGF-β1) promotes several heart alterations, including atrial fibrillation (AF). In this work, we hypothesized that these effects might be associated with a potential modulation of Na(+) and K(+) channels. Atrial myocytes were cultured 1-2days under either control conditions, or the presence of TGF-β1. Subsequently, Na(+) (I(Na)) and K(+) (I(K)) currents were investigated under whole-cell patch-clamp conditions. Three K(+) currents were isolated: inward rectifier (I(Kin)), outward transitory (I(to)), and outward sustained (I(Ksus)). Interestingly, TGF-β1 decreased (50%) the densities of I(Kin) and I(Ksus) but not of I(to). In addition, the growth factor reduced by 80% the amount of I(Na) available at -80mV. This effect was due to a significant reduction (30%) in the maximum I(Na) recruited at very negative potentials or I(max), as well as to an increased fraction of inactivated Na(+) channels. The latter effect was, in turn, associated to a -7mV shift in V(1/2) of inactivation. TGF-β1 also reduced by 60% the maximum amount of intramembrane charge movement of Na(+) channels or Q(max), but did not affect the corresponding voltage dependence of activation. This suggests that TGF-β1 promotes loss of Na(+) channels from the plasma membrane. Moreover, TGF-β1 also reduced (50%) the expression of the principal subunit of Na(+) channels, as indicated by western blot analysis. Thus, TGF-β1 inhibits the expression of Na(+) channels, as well as the activity of K(+) channels that give rise to I(Ksus) and I(Kin). These results may contribute to explaining the previously observed proarrhythmic effects of TGF-β1.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have