Abstract

The mechanical behaviour of laminated glass plates and beams is affected in different ways by the shear stiffness of interlayer materials. Polymeric interlayers are viscoelastic materials, and therefore experience creep when subjected to long-term loading. In this paper, three laminated glass panels, each with a different interlayer material (PVB Clear, PVB ES, and SentryGlas), were placed between two laminated glass beams. A uniformly distributed load was applied during four months to study the effect of creep, and then was removed to see the deflection recovery during one month. The midspan vertical displacement of the two laminated glass beams remained almost constant over time, with a small variation that was attributed to the rubber sheets placed in the supports. The plate with SentryGlas had the lowest elastic deformation, creep, and residual deformation. The plate with PVB Clear had the highest elastic and total deformation. The plate with PVB ES had a similar initial deflection as SentryGlas, but was the one that experienced the highest creep. At the end of the test the plates still had a small residual deflection, which could be due to an incomplete deflection recovery. The flexural behaviour of the three laminated glass plates was simulated using a Finite Element Model, representing the loading, the creep, the unloading, and the deflection recovery stages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call