Abstract

Long-term immune sequelae after sepsis are poorly understood. To assess whether abnormalities in the host immune response during hospitalization for sepsis persist after discharge. This prospective, multicenter cohort study enrolled and followed up for 1 year adults who survived a hospitalization for sepsis from January 10, 2012, to May 25, 2017, at 12 US hospitals. Circulating levels of inflammation (interleukin 6 and high-sensitivity C-reactive protein [hs-CRP]), immunosuppression (soluble programmed death ligand 1 [sPD-L1]), hemostasis (plasminogen activator inhibitor 1 and D-dimer), endothelial dysfunction (E-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1), and oxidative stress biomarkers were measured at 5 time points during and after hospitalization for sepsis for 1 year. Individual biomarker trajectories and patterns of trajectories across biomarkers (phenotypes) were identified. Outcomes were adjudicated centrally and included all-cause and cause-specific readmissions and mortality. A total of 483 patients (mean [SD] age, 60.5 [15.2] years; 265 [54.9%] male) who survived hospitalization for sepsis were included in the study. A total of 376 patients (77.8%) had at least 1 chronic disease, and their mean (SD) Sequential Organ Failure Assessment score was 4.2 (3.0). Readmissions were common (485 readmissions in 205 patients [42.5%]), and 43 patients (8.9%) died by 3 months, 56 patients (11.6%) died by 6 months, and 85 patients (17.6%) died by 12 months. Elevated hs-CRP levels were observed in 23 patients (25.8%) at 3 months, 26 patients (30.2%) at 6 months, and 23 patients (25.6%) at 12 months, and elevated sPD-L1 levels were observed in 45 patients (46.4%) at 3 months, 40 patients (44.9%) at 6 months, and 44 patients (49.4%) at 12 months. Two common phenotypes were identified based on hs-CRP and sPDL1 trajectories: high hs-CRP and sPDL1 levels (hyperinflammation and immunosuppression phenotype [326 of 477 (68.3%)]) and normal hs-CRP and sPDL1 levels (normal phenotype [143 of 477 (30.0%)]). These phenotypes had similar clinical characteristics and clinical course during hospitalization for sepsis. Compared with normal phenotype, those with the hyperinflammation and immunosuppression phenotype had higher 1-year mortality (odds ratio, 8.26; 95% CI, 3.45-21.69; P < .001), 6-month all-cause readmission or mortality (hazard ratio [HR], 1.53; 95% CI, 1.10-2.13; P = .01), and 6-month readmission or mortality attributable to cardiovascular disease (HR, 5.07; 95% CI, 1.18-21.84; P = .02) or cancer (HR, 5.15; 95% CI, 1.25-21.18; P = .02). These associations were adjusted for demographic characteristics, chronic diseases, illness severity, organ support, and infection site during sepsis hospitalization and were robust in sensitivity analyses. In this study, persistent elevation of inflammation and immunosuppression biomarkers occurred in two-thirds of patients who survived a hospitalization for sepsis and was associated with worse long-term outcomes.

Highlights

  • Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host immune response to infection.[1]

  • Elevated hs-CRP levels were observed in 23 patients (25.8%) at 3 months, 26 patients (30.2%) at 6 months, and 23 patients (25.6%) at 12 months, and elevated sPD-L1 levels were observed in 45 patients (46.4%) at 3 months, 40 patients (44.9%) at 6 months, and 44 patients (49.4%) at 12 months

  • These phenotypes had similar clinical characteristics and clinical course during hospitalization for sepsis. Those with the hyperinflammation and immunosuppression phenotype had higher 1-year mortality, 6-month all-cause readmission or mortality, and 6-month readmission or mortality attributable to cardiovascular disease (HR, 5.07; 95% CI, 1.18-21.84; P = .02) or cancer (HR, 5.15; 95% CI, 1.25-21.18; P = .02)

Read more

Summary

Introduction

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host immune response to infection.[1]. Persistent dysregulation of the host immune response after hospital discharge may contribute to long-term sequelae after sepsis.[2] Evidence that supports this theory includes demonstration in a clinical study[6] that elevations in circulating interleukin (IL) 6 and IL-10 concentrations persist at hospital discharge and are associated with late sequelae. Similar elevations persisted for several months after experimental sepsis compared with sham treatment.[8] Whether immune response abnormalities persist after hospital discharge and increase the risk of long-term sequelae in humans is not known. If dysregulated immune response persists, there may be a need to test long-term immunomodulatory strategies in sepsis survivors

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call