Abstract
IntroductionEfficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs.ResultsThe findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low β-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential.ConclusionThe presented isolation method and subsequent cell expansion in platelet lysate supplemented culture medium permits suitable large-scale propagation of PB-ECFC. For optimal use of PB-ECFCs in clinical settings, our data suggest that 15–20 CPDL is the most adequate maturation stage.
Highlights
Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-endothelial-colony forming cells (ECFCs)) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products
The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS)
For optimal use of Peripheral blood samples (PB)-ECFCs in clinical settings, our data suggest that 15–20 cumulative population doubling levels (CPDL) is the most adequate maturation stage
Summary
Platelet-rich plasma (PRP) for platelet lysate was prepared by the blood transfusion service (Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands) the protocol of Korte et al[20]. The bags of 5 whole blood donations, each containing 109 platelets per mL was stored at -80°C. A batch of pooled PL consisting whole blood donations obtained from 35 healthy donors were prepared after thawing the bags of PRP followed by centrifugation at 4075x g for 15 minutes to remove the residual platelet fragments. The platelet lysate for cell culture was aliquoted and stored at -20°C. Prior to preparation of cell culture medium, the PL was thawed and centrifugated again at 4075 x g for 15 minutes. Similar results were obtained with a second pooled PL preparation based on blood of 70 healthy donors
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have