Abstract

Africans in general and specially Beninese’s low rate access to electricity requires efforts to set up new electricity production units. To satistfy the needs, it is therefore very important to have a prior knowledge of the electrical load. In this context, knowing the right need for the electrical energy to be extracted from the Beninese network in the long term and in order to better plan its stability and reliability, a forecast of this electrical load is then necessary. The study has used the annual power grid peak demand data from 2001 to 2020 to develop, train and validate the models. The electrical load peaks until 2030 are estimated as the output value. This article evaluates three algorithms of a method used in artificial neural networks (ANN) to predict electricity consumption, which is the Multilayer Perceptron (MLP) with backpropagation. To ensure stable and accurate predictions, an evaluation approach using mean square error (MSE) and correlation coefficient (R) has been used. The results have proved that the data predicted by the Bayesian regulation variant of the Multilayer Perceptron (MLP), is very close to the real data during the training and the learning of these algorithms. The validated model has developed high generalization capabilities with insignificant prediction deviations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.