Abstract

Wildfire disturbance is a major driver of biogeochemical processes in Eurasian boreal forests, yet little is known about the response of soil nutrient stoichiometry to wildfire in this ecosystem. To fill this gap, we measured the composition of available soil nutrients and their stoichiometric ratios in a Chinese boreal forest along a gradient of fire history. In the 1-year-post-fire site, wildfire increased the relative abundances of element nitrogen (N), phosphorus (P), Sulphur (S), iron (Fe), and aluminum (Al), and reduced the abundances of element calcium (Ca), magnesium (Mg), and potassium (K). Available soil N:K, N:S, P:K, P:S, and S:K ratios were 240%, 70%, 440%, 160%, and 150% higher than the control, but N:P ratio was not significantly different. In the 11-year-post-fire site, the soil nutrient composition recovered to the pre-fire levels. Although most of the soil nutrient stoichiometry returned to pre-fire levels, soil N:P ratios became significantly higher. These results showed immediate wildfire effects on soil nutrient availability and composition were strongly related to fire severity, but such effects could be subdued by soil environment and topographical variations over time. Although wildfire effects on soil nutrients are mostly short-term, it could produce relatively long-term effects on balance between N and P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.