Abstract
Pinyon (Pinus spp.) and juniper (Juniperus spp.) woodland encroachment into sagebrush (Artemisia spp.) steppe communities throughout western North America has substantially altered the vegetation structure and hydrologic function of one of the most ecologically important rangeland ecosystems in the world. Various pinyon and juniper tree removal practices are employed to re-establish sagebrush steppe vegetation and an associated resource-conserving ecohydrologic function. The effectiveness of these practices is highly variable owing to the vast domain in which woodland encroachment occurs, climate fluctuations, differences in treatment applications, and myriads of pre-treatment conditions and post-treatment land uses. This study evaluated the long-term (13 years post-treatment) effectiveness of prescribed fire and mechanical tree removal to re-establish sagebrush steppe vegetation and associated spatial patterns in ground surface conditions and soil hydrologic properties of two woodland-encroached sites. Specifically, we assessed the effects of tree removal on: (1) vegetation and ground cover at the hillslope scale (990 m2 plots) and (2) associated spatial patterns in point-scale ground surface conditions and soil hydrologic properties along transects extending from tree bases and into the intercanopy areas between trees. Both sites were in mid to late stages of woodland encroachment with extensive bare conditions (~60–80% bare ground) throughout a degraded intercanopy area (~75% of the domain) surrounding tree islands (~25% of domain, subcanopy areas). All treatments effectively removed mature tree cover and increased hillslope vegetation. Enhanced herbaceous cover (4–15-fold increases) in burned areas reduced bare interspace (bare area between plants) by at least 4-fold and improved intercanopy hydraulic conductivity (> than 2-fold) and overall ecohydrologic function. Mechanical treatments retained or increased sagebrush and generally increased the intercanopy herbaceous vegetation. Intercanopy ground surface conditions and soil hydrologic properties in mechanical treatments were generally similar to those in burned areas but were also statistically similar to the same measures in untreated areas in most cases. This suggests that vegetation and ground surface conditions in mechanical treatments are trending toward a significantly improved hydrologic function over time. Treatments had limited impact on soil hydrologic properties within subcanopy areas; however, burning did reduce the soil water repellency strength and the occurrence of strong soil water repellency underneath trees by three- to four-fold. Overall, the treatments over a 13-year period enhanced the vegetation, ground surface conditions, and soil hydrologic properties that promote infiltration and limit runoff generation for intercanopy areas representing ~75% of the area at the sites. However, ecological tradeoffs in treatment alternatives were evident. The variations in woodland responses across sites, treatments, and measurement scales in this long-term study illustrate the complexity in predicting vegetation and hydrologic responses to tree removal on woodland-encroached sagebrush sites and underpin the need and value of multi-scale long-term studies.
Highlights
Pinyon and juniper encroachment on sagebrush shrublands is attributed to multiple factors including intensive grazing, reduced fire frequencies, climate variability, and atmospheric CO2 enrichment [5,7,8], which is consistent with the drivers of woody plant encroachment on other water-limited lands around the world [9,10,11]
Mid-elevation warm and dry sagebrush sites are susceptible to woodland encroachment and subsequent invasion by fire-prone cheatgrass, with cheatgrass commonly increasing over time with ensuing amplified fire activity [8,31,32,33,34]
The enhanced herbaceous cover in burned intercanopies reduced bare interspace and improved K(h), indicating burning improved hydrologic function for conditions representing much of the total area at each site
Summary
The conversion of sagebrush steppe to a wooded shrubland or woodland commonly results in reduced understory vegetation and forage [12,13,14], loss of critical wildlife habitats [15], and increased bare ground, runoff, and soil erosion [16,17,18,19,20,21]. Mid-elevation warm and dry sagebrush sites are susceptible to woodland encroachment and subsequent invasion by fire-prone cheatgrass, with cheatgrass commonly increasing over time with ensuing amplified fire activity [8,31,32,33,34]. The risks of severe wildfire and post-fire cheatgrass dominance are high for mid-elevation woodlands with dense woody fuels and for wooded shrublands with well-connected horizontal and vertical fuel layers [5,8,35]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have