Abstract
Type 1 diabetes is an autoimmune disease that results in the specific destruction of insulin-producing beta cells in the pancreas. The aim of this study was to investigate the mechanism of exopolysaccharide from Leuconostoc pseudomesenteroides XG5 (XG5 EPS) against type 1 diabetes. Long-term drench of XG5 EPS delayed the onset of autoimmune diabetes and had fewer islets with high-grade infiltration (an insulitis score of 3 or 4) than untreated NOD mice. Oral administration of 50 mg kg-1 d-1 XG5 EPS increased the insulin and glucagon-like peptide-1 (GLP-1) levels of serum, stimulated GLP-1 secretion and upregulated gcg mRNA expression of colon in NOD mice. Moreover, oral administration of 50 mg kg-1 d-1 XG5 EPS significantly increased total short-chain fatty acids levels in the colon contents, especially those of acetic acid and butyric acid. In NCI-H716 cells, 500 and 1000 μmol L-1 sodium butyrate promoted the secretion of GLP-1 and upregulated the mRNA expression of gcg and PC3, while XG5 EPS and sodium acetate did not stimulate the GLP-1 secretion. Therefore, long-term drench of XG5 EPS delayed the onset of autoimmune diabetes, which may be directly correlated with the increase of butyrate in the colon of NOD mice. Long-term drench of 50 mg kg-1 d-1 XG5 EPS promoted the expression and secretion of GLP-1 by increasing the production of butyric acid, thereby delaying T1D onset in NOD mice. © 2021 Society of Chemical Industry.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have