Abstract

Cytarabine (araC) is a highly active antimetabolite against hematological malignancy while the agent shows limited activity for some patients despite maintenance or continued therapy with ara-C-containing regiments. In this study, we focused to elucidate the mechanism of intrinsic resistance to araC. The concentration of intracellular ara-CTP and incorporated ara-CTP were monitored in human leukemia cell line-HL-60 for different passages in parental with its variant HL-60R. The expression of mRNA for deoxycytidine kinase (dCK), cytidine deaminas (CDA), human equilibrative nucleoside transporter 1 (hENT1), and cytosolic 50-nucleotidase II (cN-II) were examined by Real-time PCR in HL-60 and HL-60R for different passages. And activities of two metabolizing enzymes for araC, dCK and CDA were further examined. The results showed that the concentration of intracellular ara-CTP was significantly reduced and the ara-U increased in HL-60 cells for 50 passages compared with the 5 passages, and associated with higher CDA activity. All the factors in HL-60R cells did not change by the incubation of ara-C. In conclusion, the long term cultured cells are intrinsically resistant to ara-C through high CDA activity, but not low DCK activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.