Abstract
Enhancing capacity utilization of manufacturing resources is of utmost importance in tackling the current challenges of meeting customized and small-batch market demands. Given the research highlights on platform-based manufacturing service collaboration (MSC) offering high-quality service solutions, efficient service scheduling strategies are urgently needed to maximize overall utility amidst great computational complexity and unpredictable task arrivals. To address this issue, this paper proposes a novel distributed online task dispatch and service scheduling (DOTDSS) strategy in platform-aggregated MSC. What sets our method apart is its goal to optimize a long-term average utility performance with considering queuing dynamics of manufacturing services in multi-task processing, thereby maintaining sustainable platform operations. Firstly, we jointly consider task dispatch and service scheduling decisions into the formulation of a quality-of-service aware (QoS) stochastics optimization problem. The newly constructed logarithmic utility function effectively strikes a trade-off between the throughput and capacity utilization of manufacturing services with diverse capabilities. By incorporating the goal of reducing queue lengths, we then transform the optimization problem into a form with less computational complexity and guaranteed optimality using Lyapunov optimization. We further propose a DOTDSS strategy that relies solely on the current system state and queue information to generate scalable MSC solutions. It does not need to predict task arrival statistics in advance, and it exhibits great adaptability to uncertainties in task arrivals and service availabilities. Finally, numerical results based on simulation data and real workload traces demonstrate the effectiveness of our method. It also shows that the aggregation collaboration pattern among a group of candidates can achieve better performance than that by the optimal candidate alone.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.