Abstract

The development of power grids is hindered by the limited transmission capacity of cable equipment, necessitating the accurate prediction of dynamic ampacity for cable expansion. This study focuses on the 110 kV cable intermediate joint, employing radial and axial inversion techniques for real-time conductor temperature inversion. Utilizing the Prophet time series model, we predict environmental changes and propose a dynamic ampacity evaluation method for cable intermediate joints. Experimental validation confirms the model’s accuracy, with prediction errors under 10 K, demonstrating its potential for enhancing cable system reliability and power grid development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.