Abstract

Accurate estimations of municipal solid waste (MSW) generation are vital to effective MSW management systems. While various single-point estimation approaches have been developed, the non-linearity and multiple site-specific influencing factors associated with MSW management systems make it challenging to forecast MSW generation quantities precisely. To address these concerns, this study developed a two-stage modeling and scenario analysis procedure for MSW generation and taking Shanghai as a test case demonstrated its viability. In the first stage, nine influencing factors were selected, and a hybrid novel forecasting model based on a long short-term memory neural network and an improved particle swarm optimization (IPSO-LSTM) was proposed for the forecasting of the MSW generation quantities, after which actual Shanghai data from 1980 to 2019 were used to test the performance. In the second stage, the future influencing variable values in different scenarios were predicted using an improved grey model, after which the predicted Shanghai MSW generation quantities from 2025 to 2035 were evaluated under various scenarios. It was found that (1) the proposed IPSO-LSTM had higher accuracy than the benchmark models; (2) the MSW generation quantities are expected to respectively increase to 9.971, 9.684, and 9.090 million tons by 2025 and 11.402, 11.285, and 10.240 by 2035 under the low, benchmark, and high scenarios; and (3) the MSW generation differences between the high and medium scenarios were decreasing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.