Abstract

Stock is a good investment tool, keeping money from inflation, and very trendy to earn a living nowadays by becoming a trader. There is always a risk, especially when trading, because stocks can fluctuate easily depending on the company. One of the data science capabilities, prediction modeling, can help lower the risk by predicting the stock price movement. This research proposed a prediction sequential data model, an optimized hyperparameter LSTM Network using hybrid GA-PSO (LSTM-GA-PSO). Hybrid GA-PSO aims to overcome the GA problem in terms of slow execution time and PSO that tend to be trapped in the local optimum. With the characteristics of both algorithms, the hybrid algorithm can solve each other algorithms downside. The low fluctuation stock of the Indonesian Index LQ45 dataset will be used to train and test the model and compare the proposed model with LSTM-GA and LSTM-PSO. Experiment results show that the hybrid LSTM-GA-PSO has a promising performance. Hybrid GA-PSO improved 18.18% of its time execution to GA and 29.07% accuracy to PSO.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.