Abstract

To enhance the precision of fault diagnosis for high-voltage direct-current (HVDC) systems by effectively extracting various types of fault characteristics, a fault diagnosis method based on the long short-term memory network (LSTM) is proposed in this paper. The method relies on a knowledge graph platform and is developed using measured data from four fault types in an HVDC substation located in southwest China. Firstly, a knowledge graph for the HVDC systems is constructed, then the fault waveform data is preprocessed and divided into a training set and a test set. Various optimizers are employed to train and test the LSTM. The proposed strategy’s accuracy is calculated and compared with recurrent neural network (RNN), eXtreme Gradient Boosting (XGBoost), support vector machine (SVM), Naive Bayes classifier, probabilistic neural networks (PNN), and classification learner (CL), which are commonly used in fault diagnosis. Results indicate that the proposed method achieves an accuracy of over 95%, which is 30% higher than RNN, 8% higher than XGBoost, 4% higher than SVM, 7% higher than Naive Bayes, 40% higher than PNN, and 42% higher than classification learner (CL), respectively; the method also has the minimum time cost, fully demonstrating its superiority and effectiveness compared to other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.