Abstract

BackgroundSpinocerebellar ataxias (SCA) are often caused by expansions of short tandem repeats. Recent methodological advances have made repeat expansion detection with long-read sequencing (LRS) feasible. Our study investigated one family with SCA 36 and further summarized the genetic and clinical characteristics of the total of 161 patients across different ethnic groups reported worldwide. MethodsWe enrolled a pedigree of 4 patients. The proband was a 55-year-old male. And he was screened for dynamic mutations of SCA subtypes by Tri-prime PCR (TP-PCR) and capillary electrophoresis, showing NOP56 as the candidate gene. The cosegregation was conducted by screening the NOP56 gene in his daughter and further confirmed by low-coverage (∼15 ×) LRS on the Oxford Nanopore platform. ResultsThe SCA36 pedigree included a total of 4 patients. The proband showed the initial manifestation at the age of 45 years old, which was characterized by truncal ataxia. Genetic test results showed the (GGCCTG)n expansion in NOP56 gene (3/>15 and 6/>15 times respectively). To clarify the diagnosis genetically, LRS was performed in his daughter showing a large intronic insertion (chr20: 2633004 INS 7603 bp) containing (GGCCTG)n expansion of 782 units in NOP56 as the causative mutation. ConclusionsWe identified one SCA36 pedigree by combining TP-PCR with LRS. Our study suggested LRS as an effective tool for molecular diagnosis. LRS also worked as a supplementary but necessary diagnostic tool for dynamic mutation-related SCA on the basis of repeat-primed PCR as well as capillary electrophoresis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call