Abstract

Abstract. The westerly wind travelling at high altitudes over eastern Asia transports aerosols from the Asian deserts and urban areas to downwind areas such as Japan. These long-range-transported aerosols include not only mineral particles but also microbial particles (bioaerosols), that impact the ice-cloud formation processes as ice nuclei. However, the detailed relations of airborne bacterial dynamics to ice nucleation in high-elevation aerosols have not been investigated. Here, we used the aerosol particles captured in the snow cover at altitudes of 2450 m on Mt Tateyama to investigate sequential changes in the ice-nucleation activities and bacterial communities in aerosols and elucidate the relationships between the two processes. After stratification of the snow layers formed on the walls of a snow pit on Mt Tateyama, snow samples, including aerosol particles, were collected from 70 layers at the lower (winter accumulation) and upper (spring accumulation) parts of the snow wall. The aerosols recorded in the lower parts mainly came from Siberia (Russia), northern Asia and the Sea of Japan, whereas those in the upper parts showed an increase in Asian dust particles originating from the desert regions and industrial coasts of Asia. The snow samples exhibited high levels of ice nucleation corresponding to the increase in Asian dust particles. Amplicon sequencing analysis using 16S rRNA genes revealed that the bacterial communities in the snow samples predominately included plant associated and marine bacteria (phyla Proteobacteria) during winter, whereas during spring, when dust events arrived frequently, the majority were terrestrial bacteria of phyla Actinobacteria and Firmicutes. The relative abundances of Firmicutes (Bacilli) showed a significant positive relationship with the ice nucleation in snow samples. Presumably, Asian dust events change the airborne bacterial communities over Mt Tateyama and carry terrestrial bacterial populations, which possibly induce ice-nucleation activities, thereby indirectly impacting climate change.

Highlights

  • The westerly wind transports mineral particles from the central desert areas of the Asian continent, including the Gobi and Taklimakan deserts, and mineral particles contaminated by anthropogenic pollutants at continental coasts are dispersed eastward over the Sea of Japan to the Japanese mainland

  • This study investigated the ice-nucleation activities of intercontinentally transported aerosols in the snow cover and identified the airborne bacterial changes relating to ice nucleation

  • The majority of snow samples recovered from Mt Tateyama using the method outlined in Sect. 2.1 were collected from the snow wall, of which most layers were composed of compacted snow or solid-type snow

Read more

Summary

Introduction

The westerly wind transports mineral particles from the central desert areas of the Asian continent, including the Gobi and Taklimakan deserts, and mineral particles contaminated by anthropogenic pollutants at continental coasts are dispersed eastward over the Sea of Japan to the Japanese mainland The airborne bacterial compositions at high altitudes above Asian dust deposition and areas of anthropogenic pollution, such as Beijing (Li et al, 2010), Osaka (Yamaguchi et al, 2012), the Noto Peninsula (Maki et al, 2010, 2013) and the North American mountains (Smith et al, 2012), vary significantly. Since desertification of dryland was thought to increase the transport of bioaerosols (Huang et al, 2017a, b), the ecological impact on bioaerosols should be assessed

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.