Abstract
We present a method for evaluating electrostatic and polarization energies of a localized charge, charge transfer state, or exciton embedded in a neutral molecular environment. The approach extends the Ewald summation technique to polarization effects, rigorously accounts for the long-range nature of the charge-quadrupole interactions, and addresses aperiodic embedding of the charged molecular cluster and its polarization cloud in a periodic environment. We illustrate the method by evaluating the density of states and ionization energies in thin films and heterostructures of organic semiconductors. By accounting for long-range mesoscale fields, we obtain the ionization energies in both crystalline and mesoscopically amorphous systems with high accuracy.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have