Abstract
Determining the state of health (SOH) and end of life (EOL) represents a critical challenge in battery management. This study introduces an innovative neural network-based methodology that forecasts both the SOH and EOL, utilizing features engineered from charge-discharge voltage profiles. Specifically, long-short-term memory (LSTM) and gated-recurrent unit (GRU) neural networks are trained against fast-charging datasets with novel loss function that emphasizes SOH regression while penalizing its decay. The devised models yield low average errors in SOH and EOL predictions (5.49% and − 1.27%, respectively, for LSTM), over extended horizons encompassing 80% of the forecast battery lifespan. From a combined evaluation using Pearson's correlation and saliency analysis, it is found that voltages most strongly associated with aging occur after the initial constant current rate step. In short, this study offers a new perspective on the precise prediction of SOH and EOL by integrating feature engineering with neural networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.