Abstract

We investigate the optical properties of silver nanoparticles used in tandem ultrathin-film organic photovoltaic cells. Experimental results indicate that the enhancement of an incident optical field persists into an organic dielectric for distances of up to 10nm from the center of an array of approximately 5-nm-diameter nanoparticles. Furthermore, this enhancement exists far from the resonant particle surface-plasmon excitation energy. We propose a model to explain this long-range enhancement and investigate the role that cluster spacing, shape, and an embedding dielectric medium with a complex dielectric constant play in determining plasmon enhancement. This effect is shown to increase the efficiency of tandem organic solar cells, and the implications for further solar cell efficiency improvements are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.