Abstract
High-precision distance measurement in a long range is critical for many advanced applications, such as satellite formation flying, free space optical communication and large scale machining. A 52 m absolute distance measurement in free space based on time of flight of femtosecond laser is demonstrated. The timing offset between target-reflected and the reference pulses is precisely characterized by balanced optical cross-correlation method. The balanced cross correlation signal is used for the feedback control of the cavity length and tightly locks the distance under test to multiple of pulse separation. As a result, the time of flight of the target-reflected pulse is determined by the repetition rate of the femtosecond laser, which effectively avoids the loss of timing resolution caused by direct access of pulse time-of-flight from photo-detection. In the experiment, a Yb -doped high repetition rate mode-locked fiber laser working at 1.04 μm is used as a femtosecond laser source, and a measurement precision of 12 nm is achieved in an average time of one second.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.