Abstract
BackgroundPancreatic cancer, one of the top two most fatal cancers, is characterized by a desmoplastic reaction that creates a dense microenvironment, promoting hypoxia and inducing the epithelial-to-mesenchymal transition (EMT) to facilitate invasion and metastasis. Recent evidence indicates that the long noncoding RNA NORAD may be a potential oncogenic gene and that this lncRNA is significantly upregulated during hypoxia. However, the overall biological role and clinical significance of NORAD remains largely unknown.MethodsNORAD expression was measured in 33 paired cancerous and noncancerous tissue samples by real-time PCR. The effects of NORAD on pancreatic cancer cells were studied by overexpression and knockdown in vitro. Insights into the mechanism of competitive endogenous RNAs (ceRNAs) were gained from bioinformatics analyses and luciferase assays. In vivo, metastatic potential was identified using an orthotopic model of PDAC and quantified using bioluminescent signals. Alterations in RhoA expression and EMT levels were identified and verified by immunohistochemistry and Western blotting.ResultsNORAD is highly expressed in pancreatic cancer tissues and upregulated in hypoxic conditions. NORAD upregulation is correlated with shorter overall survival in pancreatic cancer patients. Furthermore, NORAD overexpression promoted the migration and invasion of pancreatic carcinoma cells, while NORAD depletion inhibited EMT and metastasis in vitro and in vivo. In particular, NORAD may function as a ceRNA to regulate the expression of the small GTP binding protein RhoA through competition for hsa-miR-125a-3p, thereby promoting EMT.ConclusionsElevated expression of NORAD in pancreatic cancer tissues is linked to poor prognosis and may confer a malignant phenotype upon tumor cells. NORAD may function as a ceRNA to regulate the expression of the small GTP binding protein RhoA through competition for hsa-miR-125a-3p. This finding may contribute to a better understanding of the role played by lncRNAs in hypoxia-induced EMT and provide a potential novel diagnostic and therapeutic target for pancreatic cancer.
Highlights
Pancreatic cancer, one of the top two most fatal cancers, is characterized by a desmoplastic reaction that creates a dense microenvironment, promoting hypoxia and inducing the epithelial-to-mesenchymal transition (EMT) to facilitate invasion and metastasis
We demonstrated that the long noncoding RNAs (lncRNAs) NORAD is upregulated during hypoxia and promotes EMT in tumor cells
We found that NORAD is upregulated in pancreatic ductal adenocarcinomas (PDACs)
Summary
Pancreatic cancer, one of the top two most fatal cancers, is characterized by a desmoplastic reaction that creates a dense microenvironment, promoting hypoxia and inducing the epithelial-to-mesenchymal transition (EMT) to facilitate invasion and metastasis. In contrast to the steady increase in survival rates for most cancers, advances have been slow for pancreatic cancers, for which the 5-year relative survival remained at approximately 8% for 2005–2011, only 4–5% higher than 1975–1989 [2]. It is believed that the hypoxic microenvironment and hypoxia-induced epithelial-to-mesenchymal transition (EMT) are critical drivers of pancreatic cancer metastasis and progression [6,7,8]. These processes occur via activation of various signaling pathways such as Hedgehog signaling [7, 9], PI3K/Akt signaling [10] and Notch signaling [11]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.