Abstract

Pancreatic cancer is a malignant tumor of the digestive system that is highly malignant, difficult to treat, and confers a poor prognosis for patients. BRAF-activated noncoding RNA (BANCR) has been proven to play an important role in the invasion and metastasis of pancreatic cancer. In this study, we focused on BANCR as a potential therapeutic target for human pancreatic cancer. The BANCR level in pancreatic cancer tissues and cells is affected by m6A methylation. Based on this, the aim of our study was to investigate the effect of a highly potent and selective first-in-class catalytic inhibitor of METTL3 (STM2457) on BANCR m6A methylation and its malignant biological behaviors in pancreatic cancer. The relationship between BANCR expression and BANCR m6A modification was detected with RT-qPCR and MeRIP-PCR. The expression of methyltransferase-like 3 (METTL3), the key enzyme involved in m6A methylation, in pancreatic cancer tissues was detected using a Western blot. STM2457 was used in vitro to investigate its resistance to the proliferation, invasion, and metastasis of pancreatic cancer cells. BANCR was overexpressed in pancreatic cancer tissues and cells, which was associated with poor clinical outcomes and validated in pancreatic cancer cell lines. m6A modification was highly enriched within BANCR and enhanced its expression. Remarkably, STM2457 inhibited the proliferation, invasion, and metastasis of pancreatic cancer cells by down-regulating BANCR m6A modifications. This study demonstrates the promise of BANCR as a new diagnostic and therapeutic target for pancreatic cancer and reveals the therapeutic effect that STM2457 exerts on pancreatic cancer by down-regulating BANCR m6A modifications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call