Abstract

Non-small cell lung cancer (NSCLC) is the most common malignancy worldwide, with a high death rate. Long noncoding RNA (LncRNA) NKX2-1 antisense RNA 1 (NKX2-1-AS1) has been reported to be an oncogene in lung tumorigenesis. However, the precise mechanism of NKX2-1-AS1 underlying NSCLC progression is blurry. The intention of our research was to probe the potential mechanism of NKX2-1-AS1 underlying NSCLC. NKX2-1-AS1 expression and relevant downstream gene expression were measured using RT-qPCR. Cell proliferation and apoptosis were determined by MTT assay, EdU assay along with flow cytometry analysis. Cell migratory and invasive abilities were inspected by transwell assay. Western blot and immunofluorescence staining were utilized to assess the levels of epithelial-mesenchymal transition (EMT)-related proteins. RNA pull-down together with luciferase reporter assays were performed to verify the interaction between NKX2-1-AS1 and its downstream RNAs. Xenograft tumor-bearing mouse models were built to analyze tumor growth in vivo. The results suggested that NKX2-1-AS1 was upregulated in NSCLC patient tissues and cell lines. NKX2-1-AS1 deficiency suppressed cell proliferation, migration, invasion and EMT while elevated apoptosis. NKX2-1-AS1 bound to miR-589-5p, and NME/NM23 nucleoside diphosphate kinase 1 (NME1) was targeted by miR-589-5p in NSCLC cells. Additionally, NKX2-1-AS1 accelerated the progression of NSCLC by regulating miR-589-5p/NME1 axis. NKX2-1-AS1 knockdown repressed tumor growth in vivo. In conclusion, NKX2-1-AS1 accelerated the NSCLC progression through interacting with miR-589-5p for NME1 upregulation, which may provide clues for NSCLC targeting therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call