Abstract

BackgroundCurrently, the overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory. The low viability and angiogenic capacity of the implanted cells in the local infarct tissues restrict their further application. Evidence shows that long noncoding RNA H19 (lncRNA-H19) mediates cell survival and angiogenesis. Additionally, it is also involved in MSCs biological activities. This study aimed to explore the functional role of lncRNA-H19 in MSCs survival and angiogenic capacity as well as the underlying mechanism.MethodsMSCs were obtained from C57BL/6 mice and cultured in vitro. Cells at the third passage were divided into the following groups: MSCs+H19, MSCs+H19 NC, MSCs+si-H19, MSCs+si-H19 NC and MSCs. The MSCs+H19 and MSCs+H19 NC groups were transfected with lncRNA-H19 and lncRNA-H19 scramble RNA respectively. The MSCs+si-H19 and MSCs+si-H19 NC groups were transfected with lncRNA-H19 siRNA and lncRNA-H19 siRNA scramble respectively. MSCs were used as the blank control. All groups were exposed to normoxia (20% O2) and hypoxia (1% O2)/serum deprivation (H/SD) conditions for 24 h. Cell proliferation, apoptosis and vascular densities were assessed. Bioinformatics and dual luciferase reporter assay were performed. Relevant biomarkers were detected in different experimental groups.ResultsOverexpression of lncRNA-H19 improved survival and angiogenic capacity of MSCs under both normoxia and H/SD conditions, whereas its knockdown impaired cell viability and their angiogenic potential. MicroRNA-199a-5p (miR-199a-5p) targeted and downregulated vascular endothelial growth factor A (VEGFA). MiR-199a-5p was a target of lncRNA-H19. LncRNA-H19 transfection led to a decreased level of miR-199a-5p, accompanied with an elevated expression of VEGFA. However, both miR-199a-5p and VEGFA presented inverse alterations in the condition of lncRNA-H19 knockdown.ConclusionsLncRNA-H19 enhanced MSCs survival and their angiogenic potential in vitro. It could directly upregulate VEGFA expression by inhibiting miR-199a-5p as a competing endogenous RNA. This mechanism contributes to a better understanding of MSCs biological activities and provides new insights for cell therapy based on MSCs transplantation.

Highlights

  • The overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory

  • The crucial role of Long ncRNAs (lncRNAs)-H19 in the regulation of cell survival and angiogenic potential was verified by targeted gene overexpression or silencing studies

  • It was shown that the mRNA level of lncRNA-H19 was distinctly increased in the MSCs+H19 group compared with the MSCs +H19 scramble negative control (H19 NC) and MSCs groups under both normoxia and /serum deprivation (H/SD) conditions, while its expression level was significantly decreased in the MSCs+si-H19 group in contrast with the MSCs+si-H19 NC and MSCs groups (P < 0.01, Fig. 1b), indicating that lncRNA

Read more

Summary

Introduction

The overall therapeutic efficiency of mesenchymal stem cells (MSCs) transplantation for the treatment of cardiovascular disease is not satisfactory. The low viability and angiogenic capacity of the implanted cells in the local infarct tissues restrict their further application. Evidence shows that long noncoding RNA H19 (lncRNA-H19) mediates cell survival and angiogenesis. It is involved in MSCs biological activities. This study aimed to explore the functional role of lncRNA-H19 in MSCs survival and angiogenic capacity as well as the underlying mechanism. Stem cell transplantation has emerged as a novel therapeutic approach for the treatment of cardiovascular disease [1]. Numerous studies reveal that stem cell transplantation results in cardiomyocyte differentiation and neovascularization [2]. It is imperative to excavate the relevant molecular mechanisms that dominate their survival and angiogenic capacity

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call