Abstract

It is well-known that the transition function of the Ornstein-Uhlenbeck process solves the Fokker-Planck equation. This standard setting has been recently generalized in different directions, for example, by considering the so-called $\alpha $-stable driven Ornstein-Uhlenbeck, or by time-changing the original process with an inverse stable subordinator. In both cases, the corresponding partial differential equations involve fractional derivatives (of Riesz and Riemann-Liouville types, respectively) and the solution is not Gaussian. We consider here a new model, which cannot be expressed by a random time-change of the original process: we start by a Fokker-Planck equation (in Fourier space) with the time-derivative replaced by a new fractional differential operator. The resulting process is Gaussian and, in the stationary case, exhibits a long-range dependence. Moreover, we consider further extensions, by means of the so-called convolution-type derivative.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.