Abstract

AbstractThe 8 September 2017 M8.2 Tehuantepec, Mexico, earthquake ruptured an ~150‐km‐long high‐angle normal fault below the subduction zone megathrust. A tsunami was generated by the event with surveyed runup as large as 3 m. Tide gauges in the region show a remarkably long duration of the tsunami with oscillations within the very wide and shallow Tehuantepec shelf lasting as long as 3 days. Here we produce a model of the tsunami and validate it by comparing it to the tsunami survey and to the time and frequency domain features of regional tide gauges. We analyze the model results and show that the long‐lived oscillations are a result of wholesale resonance of the shelf as well as very efficient trapping of edge waves at the shore. These resonant features are the result of the Tehuantepec shelf morphology and illuminate a previously unidentified tsunami hazard for the region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.