Abstract

Abstract Accretion disks can be eccentric: they support m = 1 modes that are global and slowly precessing. But whether the modes remain trapped in the disk—and hence are long-lived—depends on conditions at the outer edge of the disk. Here we show that in disks with realistic boundaries, in which the surface density drops rapidly beyond a given radius, eccentric modes are trapped and hence can live for as long as the viscous time. We focus on pressure-only disks around a central mass, and show how this result can be understood with the help of a simple second-order WKB theory. We show that the longest-lived mode is the zero-node mode in which all of the disk’s elliptical streamlines are aligned, and that this mode decays coherently on the viscous timescale of the disk. Hence, such a mode, once excited, could live as long as the lifetime of the disk. It may be responsible for asymmetries seen in recent images of protoplanetary disks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.