Abstract

AbstractThe mean electromotive force (EMF) associated with exponentially growing perturbations of an Euler flow with elliptic streamlines in a rotating frame of reference is studied. We are motivated by the possibility of dynamo action triggered by tidal deformation of astrophysical objects such as accretion discs, stars or planets. Ellipticity of the flow models such tidal deformations in the simplest way. Using analytical techniques developed by Lebovitz & Zweibel (Astrophys. J., vol. 609, 2004, pp. 301–312) in the limit of small elliptic (tidal) deformations, we find the EMF associated with each resonant instability described by Mizerski & Bajer (J. Fluid Mech., vol. 632, 2009, pp. 401–430), and for arbitrary ellipticity the EMF associated with unstable horizontal modes. Mixed resonance between unstable hydrodynamic and magnetic modes and resonance between unstable and oscillatory horizontal modes both lead to a non-vanishing mean EMF which grows exponentially in time. The essential conclusion is that interactions between unstable eigenmodes with the same wave-vector $\mathbi{k}$ can lead to a non-vanishing mean EMF, without any need for viscous or magnetic dissipation. This applies generally (and not only to the elliptic instabilities considered here).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.