Abstract

Crossed magnetic and electric fields are observed to extend the lifetime of high molecular Rydberg states of DABCO (1,4-Diazabicyclo[2.2.2]octane) well into the microsecond range. The experimental and computational (using classical mechanics and for a diatomic polar core) results agree both on the magnitude of the effect and on its decrease with increasing electrical field. Theoretical considerations suggest that this time-stretching effect is only present for high Rydberg states and/or for not too weak fields. The computed lifetime increases as the magnetic-field strength is decreased but it requires a finite magnetic field for the onset of the effect. The experimental technique of detection of the surviving Rydberg states via their ionization in a delayed field pulse (known as ZEKE spectroscopy) is most easily implemented for high (say, n>100) but not too high (n400) Rydberg states. In this regime, the magnetic field required for the additional time stretching is larger than that due to the earth but can be significantly weaker than that required to induce extensive chaotic behavior. The results of the numerically exact classical simulations are interpreted using equations of motion, cast in the form of a mapping, which retain terms up to second order in the fields. (The first-order terms are qualitatively and quantitatively not, by themselves, sufficient.) As is to be expected on physical grounds, the origin of the effect is the slow, periodic modulation of the magnitude of the magnetic quantum number ${\mathit{m}}_{\mathit{l}}$ of the electron due to terms second order in the magnetic field. Since the angular momentum l of the electron is bounded from below by ${\mathit{m}}_{\mathit{l}}$, and since it requires a low l for the electron to couple effectively to the molecular core, the presence of the magnetic field provides for an elongation of the time scale which is over and above that made possible due to the periodic motion of l due to the dc electric field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call