Abstract

Organosulfides are promising candidates as cathode materials for the development of electric vehicles and energy storage systems due to their low-cost and high capacity properties. However, they generally suffer from slow kinetics because of the large rearrangement of S-S bonds and structural degradation upon cycling in batteries. In this paper, we reveal that soluble bis(2-pyrimidyl) disulfide (Pym2 S2 ) can be a high-rate cathode material for rechargeable lithium batteries. Benefiting from the superdelocalization of pyrimidyl group, the extra electrons prefer to be localized on the π* (pyrimidyl group) than σ* (S-S bond) molecular orbitals initially, generating the anion-like intermedia of [Pym2 S2 ]2- and thus decreasing the dissociation energy of the S-S bond. It makes the intrinsic energy barrier of dissociative electron transfer depleted, therefore the lithium half cell exhibits 2000 cycles at 5 C. This study provides a distinct pathway for the design of high-rate, long-cycle-life organic cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.