Abstract
Social media serves as a vast repository of data, offering insights into public perceptions and emotions surrounding significant societal issues. Amid the COVID-19 pandemic, long COVID (formally known as post-COVID-19 condition) has emerged as a chronic health condition, profoundly impacting numerous lives and livelihoods. Given the dynamic nature of long COVID and our evolving understanding of it, effectively capturing people's sentiments and perceptions through social media becomes increasingly crucial. By harnessing the wealth of data available on social platforms, we can better track the evolving narrative surrounding long COVID and the collective efforts to address this pressing issue. This study aimed to investigate people's perceptions and sentiments around long COVID in Canada, the United States, and Europe, by analyzing English-language tweets from these regions using advanced topic modeling and sentiment analysis techniques. Understanding regional differences in public discourse can inform tailored public health strategies. We analyzed long COVID-related tweets from 2021. Contextualized topic modeling was used to capture word meanings in context, providing coherent and semantically meaningful topics. Sentiment analysis was conducted in a zero-shot manner using Llama 2, a large language model, to classify tweets into positive, negative, or neutral sentiments. The results were interpreted in collaboration with public health experts, comparing the timelines of topics discussed across the 3 regions. This dual approach enabled a comprehensive understanding of the public discourse surrounding long COVID. We used metrics such as normalized pointwise mutual information for coherence and topic diversity for diversity to ensure robust topic modeling results. Topic modeling identified five main topics: (1) long COVID in people including children in the context of vaccination, (2) duration and suffering associated with long COVID, (3) persistent symptoms of long COVID, (4) the need for research on long COVID treatment, and (5) measuring long COVID symptoms. Significant concern was noted across all regions about the duration and suffering associated with long COVID, along with consistent discussions on persistent symptoms and calls for more research and better treatments. In particular, the topic of persistent symptoms was highly prevalent, reflecting ongoing challenges faced by individuals with long COVID. Sentiment analysis showed a mix of positive and negative sentiments, fluctuating with significant events and news related to long COVID. Our study combines natural language processing techniques, including contextualized topic modeling and sentiment analysis, along with domain expert input, to provide detailed insights into public health monitoring and intervention. These findings highlight the importance of tracking public discourse on long COVID to inform public health strategies, address misinformation, and provide support to affected individuals. The use of social media analysis in understanding public health issues is underscored, emphasizing the role of emerging technologies in enhancing public health responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.