Abstract

Taxanes can induce drug resistance by increasing signaling pathways such as PI3K/Akt and ERK, which promote survival and cell growth in human cancer cells. We have previously shown that long chain n-3 polyunsaturated fatty acids, such as docosahexaenoic acid (DHA, 22:6n-3) decrease resistance of experimental mammary tumors to anticancer drugs. Our objective was to determine whether DHA could increase tumor sensitivity to docetaxel by down-regulating these survival pathways. In docetaxel-treated MDA-MB-231 cells, phosphorylated-ERK1/2 levels were increased by 60% in membrane and nuclear compartments, compared to untreated cells. Our data showed that ERK1/2 activation depended on PKC activation since: i) enzastaurin (a pan-PKC inhibitor) blocked docetaxel-induced ERK1/2 phosphorylation ii) docetaxel increased PKC activity by 30% and phosphatidic acid level by 1.6-fold iii) inhibition of PKCε and PKCδ by siRNA resulted in reduced phosphorylated ERK1/2 levels. In DHA-supplemented cells, docetaxel was unable to increase PKCε and δ levels in membrane and nuclear fractions, resulting in diminished ERK1/2 phosphorylation and increased docetaxel efficacy. Reduced membrane level of PKCε and PKCδ was associated with significant incorporation of DHA in all phospholipids, including phosphatidylcholine which is a major source of phosphatidic acid. Additionally, examination of the Akt pathway showed that DHA could repress docetaxel-induced Ser473Akt phosphorylation. In rat mammary tumors, dietary DHA supplementation during docetaxel chemotherapy repressed ERK and Akt survival pathways and in turn strongly improved taxane efficacy. The P-ERK level was negatively correlated with tumor regression. These findings are of potential clinical importance in treating chemotherapy-refractory cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call