Abstract
Introduction: Time-dependent effects of laser radiation have been investigated by researchers. An understanding of the molecular mechanism of the time course effect of the laser needs molecular assessment and function evaluation of the related genes. In the present study, the importance of repetition of treatment after 4 weeks and gene expression alteration after 7 days of laser radiation versus one day on the human skin was evaluated via protein-protein interaction (PPI) network analysis and gene ontology enrichment. Methods: The differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus (GEO) and assessed via PPI network analysis. The critical DEGs were enriched via gene ontology. The related biological processes and biochemical pathways were retrieved from "GO-Biological process" and "Kyoto Encyclopedia of Genes and Genomes" (KEGG) respectively. Results: The repetition of laser therapy after 4 weeks of the first treatment did not have a significant effect on treatment efficacy. Sixty-three significant DEGs and six classes of biological terms discriminated the samples seven days after the treatment from individuals one day after the treatment. The studied DEGs were organized into two clusters with certain functions. Conclusion: Based on the findings after laser therapy, several days are required to complete the critical processes such as DNA biosynthesis and skin cornification.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have