Abstract
Directed reachability (or briefly reachability) is the following decision problem: given a directed graph G and two of its vertices s , t , determine whether there is a directed path from s to t in G . Directed reachability is a standard complete problem for the complexity class NL. Planar reachability is an important restricted version of the reachability problem, where the input graph is planar. Planar reachability is hard for L and is contained in NL but is not known to be NL-complete or contained in L. Allender et al. [2009] showed that reachability for graphs embedded on the torus is logspace-reducible to the planar case. We generalize this result to graphs embedded on a fixed surface of arbitrary genus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.