Abstract

A graph [Formula: see text] is well-covered if all its maximal independent sets are of the same cardinality. Assume that a weight function [Formula: see text] is defined on its vertices. Then [Formula: see text] is [Formula: see text]well-covered if all maximal independent sets are of the same weight. For every graph [Formula: see text], the set of weight functions [Formula: see text] such that [Formula: see text] is [Formula: see text]-well-covered is a vector space, denoted as WCW(G). Deciding whether an input graph [Formula: see text] is well-covered is co-NP-complete. Therefore, finding WCW(G) is co-NP-hard. A generating subgraph of a graph [Formula: see text] is an induced complete bipartite subgraph [Formula: see text] of [Formula: see text] on vertex sets of bipartition [Formula: see text] and [Formula: see text], such that each of [Formula: see text] and [Formula: see text] is a maximal independent set of [Formula: see text], for some independent set [Formula: see text]. If [Formula: see text] is generating, then [Formula: see text] for every weight function [Formula: see text]. Therefore, generating subgraphs play an important role in finding WCW(G). The decision problem whether a subgraph of an input graph is generating is known to be NP-complete. In this article we prove NP- completeness of the problem for graphs without cycles of length 3 and 5, and for bipartite graphs with girth at least 6. On the other hand, we supply polynomial algorithms for recognizing generating subgraphs and finding WCW(G), when the input graph is bipartite without cycles of length 6. We also present a polynomial algorithm which finds WCW(G) when [Formula: see text] does not contain cycles of lengths 3, 4, 5, and 7.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call