Abstract
A great obstacle for wider use of structural equation modeling (SEM) has been the difficulty in handling categorical variables. Two data sets with known structure between 2 related binary outcomes and 4 independent binary variables were generated. Four SEM strategies and resulting apparent validity were tested: robust maximum likelihood (ML), tetrachoric correlation matrix input followed by SEM ML analysis, SEM ML estimation for the sum of squares and cross-products (SSCP) matrix input obtained by the log-linear model that treated all variables as dependent, and asymptotic distribution-free (ADF) SEM estimation. SEM based on the SSCP matrix obtained by the log-linear model and SEM using robust ML estimation correctly identified the structural relation between the variables. SEM using ADF added an extra parameter. SEM based on tetrachoric correlation input did not specify the data generating process correctly. Apparent validity was similar for all models presented. Data transformation used in log-linear modeling can serve as an input for SEM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.