Abstract

This study investigates the performance of robust maximum likelihood (ML) estimators when fitting and evaluating small sample latent growth models with non-normal missing data. Results showed that the robust ML methods could be used to account for non-normality even when the sample size is very small (e.g., N < 100). Among the robust ML estimators, “MLR” was the optimal choice, as it was found to be robust to both non-normality and missing data while also yielding more accurate standard error estimates and growth parameter coverage. However, the choice “MLMV” produced the most accurate p values for the χ2 test statistic under conditions studied. Regarding the goodness of fit indices, as sample size decreased, all three fit indices studied (i.e., comparative fit index, root mean square error of approximation, and standardized root mean square residual) exhibited worse fit. When the sample size was very small (e.g., N < 60), the fit indices would imply that a proposed model fit poorly, when this might not be actually the case in the population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.